আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ 4 সেমি বাহুবিশিষ্ট বর্গক্ষেত্রে পরিলিখিত বৃত্তের ক্ষেত্রফল কত?

[ বিসিএস ৪৬তম ]

ক. 8π বর্গসেমি
খ. 6π বর্গসেমি
গ. 4π বর্গসেমি
ঘ. 2$$\sqrt{2}$$ π বর্গসেমি
উত্তরঃ 8π বর্গসেমি
ব্যাখ্যাঃ ৪ সেমি বাহুবিশিষ্ট বর্গক্ষেত্রে পরিলিখিত বৃত্তের ক্ষেত্রফল নির্ণয় করতে, প্রথমে আমাদের বৃত্তটির ব্যাসার্ধ বের করতে হবে।

বর্গক্ষেত্রের কর্ণই হবে পরিলিখিত বৃত্তের ব্যাস।

বর্গক্ষেত্রের কর্ণের দৈর্ঘ্য \(d\) নির্ণয়ের সূত্র হলো: $$d = \sqrt{a^2 + a^2} = \sqrt{2a^2} = a\sqrt{2}$$ যেখানে \(a\) হলো বর্গক্ষেত্রের বাহুর দৈর্ঘ্য।

এখানে, \(a = 4\) সেমি। সুতরাং, কর্ণের দৈর্ঘ্য: $$d = 4\sqrt{2} \text{ সেমি}$$ যেহেতু বৃত্তের ব্যাস বর্গক্ষেত্রের কর্ণের সমান, বৃত্তের ব্যাস \(D = 4\sqrt{2}\) সেমি।

সুতরাং, বৃত্তের ব্যাসার্ধ \(r\) হবে ব্যাসের অর্ধেক: $$r = \frac{D}{2} = \frac{4\sqrt{2}}{2} = 2\sqrt{2} \text{ সেমি}$$ এখন, বৃত্তের ক্ষেত্রফল \(A\) নির্ণয়ের সূত্র হলো: $$A = \pi r^2$$ এখানে, \(r = 2\sqrt{2}\) সেমি। সুতরাং, বৃত্তের ক্ষেত্রফল: $$A = \pi (2\sqrt{2})^2 = \pi (4 \times 2) = 8\pi \text{ বর্গ সেমি}$$